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Abstract

Hereditary ataxia and spastic paraplegia are heterogeneous monogenic neurodegenerative
disorders. To date, a large number of individuals with such disorders remain undiagnosed.
Here, we have assessed molecular diagnosis by gene panel sequencing in 105 early and
late-onset hereditary ataxia and spastic paraplegia probands, in whom extensive previous
investigations had failed to identify the genetic cause of disease. Pathogenic and likely-path-
ogenic variants were identified in 20 probands (19%) and variants of uncertain significance
in ten probands (10%). Together these accounted for 30 probands (29%) and involved 18
different genes. Among several interesting findings, dominantly inherited KIF1A variants,
p.(Val8Met) and p.(lle27Thr) segregated in two independent families, both presenting with a
pure spastic paraplegia phenotype. Two homozygous missense variants, p.(Gly4230Ser)
and p.(Leu4221Val) were found in SACS in one consanguineous family, presenting with
spastic ataxia and isolated cerebellar atrophy. The average disease duration in probands
with pathogenic and likely-pathogenic variants was 31 years, ranging from 4 to 51 years. In
conclusion, this study confirmed and expanded the clinical phenotypes associated with
known disease genes. The results demonstrate that gene panel sequencing and similar
sequencing approaches can serve as efficient diagnostic tools for different heterogeneous
disorders. Early use of such strategies may help to reduce both costs and time of the diag-
nostic process.

Introduction

The spinocerebellar degenerative disorders; hereditary ataxias (HA) and hereditary spastic
paraplegias (HSP) are heterogeneous disorders causing progressive gait difficulties due to
degeneration of the cerebellum, corticospinal tracts, brainstem, and/or spinal cord [1]. These
disorders are relatively rare with an estimated total prevalence of 13.9/100,000 in southeast
Norway [2]. HA is characterized by progressive limb and gait ataxia, loss of coordination and
disturbances of speech and oculomotor control. HSP is characterized by progressive spasticity

PLOS ONE | https://doi.org/10.1371/journal.pone.0174667 March 31,2017

1/19


https://doi.org/10.1371/journal.pone.0174667
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174667&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174667&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174667&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174667&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174667&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174667&domain=pdf&date_stamp=2017-03-31
https://doi.org/10.1371/journal.pone.0174667
https://doi.org/10.1371/journal.pone.0174667
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

Genetic diagnosis in neurodegenerative disorders

decision to publish, or preparation of the
manuscript.

Competing interests: The authors have declared
that no competing interests exist.

and weakness of the lower limbs, the weakness often being mild relative to the spasticity [1, 2].
Onset is reported at all ages, and all monogenic modes of inheritances—autosomal dominant,
autosomal recessive, and X-linked—have been identified [3]. To date, pathogenic variants in
more than 100 genes have been identified in spinocerebellar degenerative disorders [4-7].
Identifying molecular diagnoses in such genetically heterogeneous disorders is challenging.
Usually multitier, expensive and time-consuming investigations are performed. Nevertheless,
a large number of affected individuals remain without a molecular diagnosis.

With the progress in sequencing technologies, there are several methods available to screen
hundreds or thousands of genes at once and possibly identify a molecular diagnosis in a
shorter time period at lower costs. Gene panel sequencing (GPS) or targeted high throughput
sequencing, whole-exome sequencing (WES), and whole-genome sequencing (WGS) methods
are currently being used by researchers and diagnostic laboratories. These methods have dif-
ferent advantages related to quality and interpretation of data, management of ethical issues,
and economic effectiveness. Besides other high throughput sequencing methods, GPS has
been proven successful in several heterogeneous neurological disorders [8-10].

In the present study, we have evaluated the use of GPS in 105 clinically well-characterized
probands affected with HA or HSP in whom previous extensive investigations had failed to
identify a genetic cause. The study provides insights into the value of this diagnostic strategy
and illustrates the diversity of genetic causes of spinocerebellar degenerative disorders.

Methods
Participants

In 2002, a research study was initiated at the Department of Neurology, Oslo University Hos-
pital, carefully registering patients with HA and HSP in Norway. In 2014 the database con-
sisted of 683 individuals with a diagnosis of HA and HSP, of whom 446 were probands [2].
The database has been designed to comprehensively cover the South-Eastern Norway health
region where 55.8% of the Norwegian population lives. In addition, patients have been referred
from the rest of the country since 2002. Main inclusion criteria for HA were cerebellar gait
and/or limb ataxia, and for HSP, spasticity in the lower limbs, brisk reflexes and positive
Babinski sign [11, 12]. In addition, most of the included probands had a known family history
of disease. A minority had sporadic disease, which after thorough investigation was considered
compatible with a hereditary type of spinocerebellar degenerative disorder. 17% of the HA
probands and 37% of HSP probands had an exact genetic diagnosis (Fig 1) at start of the pres-
ent study. Molecular investigations were carried out according to what was diagnostically
available at the time of examinations. All HA probands were previously screened for SCA1,
SCA2, SCA3, SCA6, SCA7, and for Friedreich ataxia in recessive and sporadic cases. HSP pro-
bands were screened for variants in the genes linked to SPG4, SPG3A, and most also for
SPG31. To detect gene-dosage defects, multiple ligation-dependent probe amplification
(MLPA) was performed in all HSP probands for SPG4 and SPG3A. Additional molecular tests
were performed depending on the phenotype and the pedigree structure, including variants in
the genes linked to; SPG7, SPG1, SPG2, FXTAS, POLG, SCAS, SPG11, AOA1, AOA2, Ataxia
Telangiectasia, ARSACS, SPG8, DRPLA, and SPG42. Array comparative genomic hybridiza-
tion (aCGH) was performed in all probands with cognitive impairment. Also, biochemical
tests for metabolic disorders such as adrenoleukodystrophy and gangliosidosis, as well as bio-
markers as carbohydrate-deficient transferrin, albumin, cholesterol, gamma globulins, alpha-
fetoprotein and vitamin E were tested when relevant. Brain magnetic resonance imaging
(MRI) was performed in most of the probands.
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Fig 1. Clinical flowchart. The figure explains the selection of probands from the clinicogenetic database, and

the resulting total number of molecular diagnoses. VUS: variants of uncertain significance. * Indicates
selection criteria of 105 probands: 1) Verified family history; 2) Completed thorough investigations; 3)

Availability of probands; 4) Sporadic cases considered to be HSP or HA, fulfilling 2) and 3).
https://doi.org/10.1371/journal.pone.0174667.9001

According to the protocol, 105 of the 328 probands without molecular diagnosis in the
database could be selected for analysis in the study. They were selected from the database

according to the following criteria: 1. Verified family history, 2. Completed thorough investiga-
tions, including screening for differential diagnoses and the above mentioned molecular analy-
ses, and 3. Availability of probands. All probands (n = 89) fulfilling these three criteria were

included. In addition,16 sporadic cases where other causes had been excluded, and HSP or HA
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remained the most likely diagnosis were included (see Fig 1, and Table 1). To validate our
study design, we also included eight samples from the database with known pathogenic vari-
ants as positive controls (S1 Table). This project was approved by the Regional Committee for
Medical and Health Research Ethics, southeast Norway under ethical agreement REK 2010/
1579a. Written informed consent was obtained from all study participants.

Molecular genetics and bioinformatic analyses

The SureDesign tool (Agilent Technologies, Santa Clara, CA) was used to create a Haloplex
custom gene panel targeting 159 genes (including the 10-bp flanking sequence on both sides of
each exon) involved in different neurodegenerative disorders. The gene panel included 91
genes (52 Table) reported to be definitively or possibly implicated in classical HA and HSP
presentations at the time of study design (January 2014). Preparation of DNA pools from ten
individuals was carried out as described before [13]. Target enrichment was performed
according to the instructions of the Haloplex Target enrichment system for Illumina Sequenc-
ing Version D.5, May 2013. 100bp paired-end sequencing using a single lane on an Illumina
HiSeq2000 instrument (Illumina, Santa Clara, CA) was performed at the Norwegian Sequenc-
ing Centre, Oslo. We also sequenced and analyzed 230 healthy controls using the same
approach. The in-house bioinformatic pipeline has been described in details elsewhere [13].
For the variant filtering process, we considered only nonsense and missense variants, indels,
and variants at canonical splice sites, excluding variants with minor allele frequency greater
than 0.01 in different public and local resources; 1000g data (http://www.1000genomes.org),
Exome Sequencing Project (ESP, http://evs.gs.washington.edu/EVS/), Exome Aggregation
Consortium (ExAC, http://exac.broadinstitute.org) data, 176 ethnically-matched in-house
exomes, and the 230 ethnically-matched internal controls. Moreover, we used the combined
annotation dependent depletion (CADD) [14] tool to predict possible functional effects of a
variant. We used a cut-off value of Phred-scaled CADD score >12, based on the value found
for previously known pathogenic variants in our positive controls (S1 Table), as well as docu-
mented elsewhere [15]. The variants were examined by visual inspection of the sequence align-
ment/map format files to remove sequencing errors. Available non-affected and affected
family members were tested for segregation of identified variants in the respective families.
For any identified variant, all kinds of phenotypic presentations were considered in order to
allow the clinical variability. After the initial filtering process, we followed the guidelines to
interpret sequence variants provided by the joint consensus recommendations of the Ameri-
can College of Medical Genetics and Genomic (ACMG) and the Association for Molecular
Pathology (AMP). This recommends the use of specific standard terminology to classify
sequence variants into different classes; pathogenic, likely-pathogenic, and variants of uncer-
tain significance (VUS) [16]. We will refer to these criteria as the ACMG criteria. All the pre-
sented variants have been submitted to the Leiden Open Variation Database (LOVD) server
(http://databases.lovd.nl/shared), and any additional information on the sequencing data can
be shared on request.

Sanger sequencing

Variants identified by GPS were confirmed and validated by Sanger sequencing (S1 Appen-
dix). In order to investigate the location of the variants in the genome, as well as to assign evo-
lutionary conservation score (PhyloP) and functional predictions to the variants by several in-
silico programs (Polyphen2, SIFT, and MutationTaster), Alamut 2.8.0v (http://alamut.
interactive-biosoftware.com) was used.
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Results
Clinical presentation

The clinical characteristics of the 58 HA and 47 HSP probands are described in Table 1. The
inheritance pattern was presumed autosomal dominant (AD) in 68 (65%) and autosomal
recessive (AR) in 21 (20%). Sixteen (15%) were sporadic (SPO) cases. Of the autosomal reces-
sive probands, seven had consanguinity in the family history. The clinical phenotype was pure
in 45% and complex in 55% of cases. Four HA probands presented with episodic ataxia. The
average age of onset was 30.7 years, with a range from birth to 79 years of age. 39% of the pro-
bands had childhood onset of disease, with first symptoms starting before 18 years of age. Dis-
ease duration at inclusion in the database [2] was on average 22 years with a range from 2 to 72
years.

Genetic analysis

High quality sequencing data was obtained with an average of 99% bases covered >80x in the
targeted regions (S1 Fig). Our bioinformatic analyses identified 1182 variants, including single
nucleotide variants and indels. All eight positive controls were identified in the data, confirm-
ing the sensitivity of the used method (S1 Table). By applying our filtering criteria and the
ACMG guidelines for variant classification, we identified 20 probands (19%) carrying patho-
genic and likely-pathogenic variants (Table 2). The allele frequencies of these variants in local
and public databases are presented in S3 Table. Ten probands (10%) were identified with VUS
(Table 3). Together these accounted for 30 probands (29%). Of these, 16 are from HA and 14
from HSP categories (Fig 1, Tables 2 and 3).

Pathogenic and likely-pathogenic variants. In total, pathogenic and likely-pathogenic
variants were found in 15 genes. Identified variants in the genes KCND3-p.(Thr377Met),
SPAST-p.(Arg364Thr), BSCL2-p.(Ser154Leu), KIF5A-p.(Glu251Lys), ATL1-p.(Met347Thr),
and SPG7-p.(Leu78*), p.(Ala510Val), p.(Lys558*), and p.(His701Pro) have already been
reported in the literature as pathogenic [17-24], while the rest of the variants found are catego-
rized as novel pathogenic or likely-pathogenic variants (Table 2). Of the pathogenic and likely-
pathogenic variant carriers, 12 probands belonged to the childhood-onset category (<18
years), and eight had adult-onset, resulting in a diagnostic yield of 29% and 12.5% in the
respective categories. The average disease duration in probands with identified pathogenic and
likely-pathogenic variants was 31 years (range 4-51 years) (Table 4). Diagnostic rates for dif-
ferent categories such as AD, AR, SPO, consanguinity, pure, and complex forms of the disease
are presented in S4 Table. In all the 20 families with identified pathogenic or likely-pathogenic
variants, the clinical symptoms and findings were concordant with previously published
descriptions of the respective corresponding disorders. The phenotypic details of these 20 pro-
bands are documented in Table 4 as well as in S2 Appendix.

SPG30. Two novel variants in the KIF1A gene (SPG30, MIM 610357), p.(Ile27Thr) in pro-
bands HCT-024 (III-7) and p.(Val8Met), in HCT-026 (IV-6) were identified. Both variants
segregated with the phenotype in these families with an autosomal dominant inheritance pat-
tern (Table 2; Fig 2a and 2b). In the family of proband HCT-024 there were eight affected indi-
viduals in four successive generations (Fig 2a). DNA samples were available from five affected
individuals with a pure HSP phenotype for segregation analysis, which revealed that all five
carried the variant. Five individuals without subjective symptoms were also tested, of which
one (II1-8) carried the variant (Fig 2a). At the age of 31 years this subject had increased reflexes
in the lower limbs. This was interpreted as a possible sign of disease, but extensor plantar reflex
was not observed. Both families with KIF1A variants presented with a childhood onset, slowly
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Fig 2. Pedigree structures of families with KIF1A variants. (a) Pedigree structure of family HCT-024 (111-7)
with a c.80T>C, p.(lle27Thr) variant in KIF1A. The filled symbols indicate affected individuals. The striped
symbol indicates an individual that was initially classified as a non-affected individual, but after clinical re-
examination was also found to be possibly affected. (b) Pedigree structure of family of HCT-026 (IV-6) with a
c.22G>A, p.(Val8Met) variant. The symbols with a question mark are not confirmed regarding the phenotype.
The diamond shaped symbols indicate masked gender. A line crossing a symbol represents a deceased
individual. Probands are labelled with ‘P’.

https://doi.org/10.1371/journal.pone.0174667.9002
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progressive spastic paraplegia (Table 4). None of the affected individuals in these families had
signs of cognitive impairment, ataxia or neuropathy, which may be present in complex HSP
phenotypes.

ARSACS. Two novel homozygous variants, p.(Gly4230Ser) and p.(Leu4221Val) in the
SACS gene were identified in proband HCT-106 (V-3), presenting an autosomal recessive
SACS (ARSACS, MIM 270550) phenotype (Fig 3a, Table 4). There was consanguinity in this
ethnic Norwegian family, and both variants were homozygously present in the only affected
member of the family (Fig 3a). It is difficult to determine which variant is causing the disease,
or whether both are involved. Both variants are extremely rare and were predicted to possibly
affect protein function, although the evidence is stronger for the p.(Gly4230Ser) variant by sev-
eral in-silico predictions (Table 2). The proband HCT-106 experienced slowly progressive
clumsiness, and unsteadiness from 15 years of age. Brain MRI at ages of 37 and 44 years
revealed general cerebellar atrophy with no signs of pontine linear hypointensities, as well as
normal cervical cord and corpus callosum (Fig 3b, 3¢, 3d and 3e). No retinal changes were
found by fundoscopy or optical coherence tomography (Table 4).

Variants of uncertain significance. Furthermore, we identified ten VUS in eight genes
(Table 3). In five of the ten probands with VUS, the phenotype was considered to be concor-
dant with previous descriptions of the respective disorders; HCT-044 (BSCL2_SPG17, MIM
270685), HCT-088 (KCND3_SCA19, MIM 607346), HCT-086 & HCT-071 (SPTBN2_SCAS5,
MIM 600224), and HCT-115 (TTBK2_SCA11, MIM 604432) (Table 3). The phenotypic details
of all VUS are described in S2 Appendix. Eight of these ten variants were found with a very
low allele frequency in ExAC, including the five variants with concordant phenotypes. Vari-
ants located in BEANI, RTN2, and TTBK2 are categorized under this category—mainly
because the disease mechanism due to the missense variants has not been previously either
established or well-consolidated in these genes (Table 3). Further independent reports and/or
functional studies are warranted to establish whether these VUS could be relevant to the dis-
ease in these probands.

Discussion

The brain is the most complex and sophisticated organ in our body. 84% of the human genes
are expressed in the brain [25]. A small perturbation in the expression of genes in the brain
could lead to serious consequences and a number of neurological disorders including HA and
HSP. Today, routine investigation of these disorders often involves a large number of serial
independent molecular tests after the clinical diagnosis has been made. Certain mutations are
very common in some populations, thus narrowing down the required number of tests. Other
populations show high numbers of rare genotypes, as so far seen in the Norwegian ataxia pop-
ulation [2]. A correct molecular diagnosis is important for affected individuals, providing cer-
tainty, preventing unnecessary diagnostic tests and giving access to relevant supportive
therapies and genetic counseling.

By using high throughput sequencing methods, the time from disease onset to the identifi-
cation of molecular diagnoses may be substantially reduced. In the probands that were diag-
nosed in this study, there was notable average disease duration of 31 years. Our results
therefore confirm that GPS based diagnostics or similar sequencing methods should be used
earlier in the diagnostic process. However, trinucleotide expansion disorders (SCA1,2,3,6,7
and Friedreich ataxia) are relatively frequent in most HA cohorts, and such expansions are
generally not detectable by high throughput sequencing techniques [26, 27]. As suggested in
guidelines, the most frequent trinucleotide expansions should be tested initially in HA [28],
and if negative GPS and similar methods may be considered as the next level of investigation.
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Fig 3. Pedigree structure and MRI scans of a family with SACS variants. (a) Pedigree structure of family
HCT-106 (V-3) with a ¢.12688G>A, p.(Gly4230Ser) and c.12661C>G, p.(Leu4221Val) variants in SACS. A
consanguineous marriage between individuals V-2 and llI-4 is indicated by a double line. Cerebral MRls of
HCT-106 at disease duration of 28 years in (b) FLAIR sequence in midline sagittal plane, (c) FLAIR sequence
in coronal plane at the level of dorsal aspect of cerebellum, (d) FLAIR sequence in transversal plane at the
level of the middle cerebellar peduncles, and (e) T2 sequence in transversal plane at the level of the superior
cerebellar peduncles, showing atrophy of the cerebellar hemispheres and vermis with widening of fissures
and folia.

https://doi.org/10.1371/journal.pone.0174667.9003
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GPS has some advantages compared to WES and WGS. Firstly, this method provides high-
quality sequencing data with excellent coverage of the selected genes. This means that the
method can reliably identify variants. Previous studies using WES and WGS have demon-
strated that a considerable proportion of coding regions of genes harboring disease-related
variants are not covered [29-31]. Secondly, GPS can limit the genetic incidental findings that
can raise issues of ethical approval and communication of the findings to the affected individu-
als or guardians. Recently, Neveling et al [32] reported that 10% of the families did not provide
consent for DNA testing during pre-counseling because of the risk of incidental findings. On
the other hand, pre- and post-counseling can be conveniently offered to the small minority of
probands or families concerned about the incidental findings after WES or WGS analysis.
However, there are guidelines and recommendations available on how to report incidental
findings [33].

This study revealed a definitive molecular diagnosis in 19% of probands, a sizeable yield,
particularly taking into account that this cohort was previously extensively investigated by a
series of molecular and biochemical analyses. Previous studies have revealed a variable scale of
diagnostic power. According to one study, 18% molecular diagnosis was achieved by studying
50 childhood and adult-onset HA probands with GPS [34]. In another study, a diagnostic yield
of 25% was attained by GPS in SPG4-negative HSP cases [35]. A diagnostic yield of 21% was
achieved by WES in a cohort of sporadic and familial HA cases [36]. Pyle et al [37] presented
64% diagnosis by WES in a mixed cohort of HA, although the number of probands (n = 22)
screened was very low. Kara et al [38] performed a combination of Sanger and clinical exome
sequencing in a cohort of complex HSP cases and found plausible genetic defects in 49% with
overwhelming majority (31%) of SPG11 cases. Another clinical exome sequencing study in a
cohort of HSP and HA revealed 22-34% range of diagnostic yield [39]. The clinical character-
istics of the studied cohort can affect the variable diagnostic yield found in different studies.
This is demonstrated by the higher diagnostic yield seen in childhood-onset cases (29%) as
compared to adult-onset (12.5%) in our study, as is also seen in previous studies [40, 41]. How-
ever, our study cohort consisted of previously extensively diagnosed probands, which intro-
duces a selection bias compared to naive patient populations.

A large number of cases remained unsolved. There are several possible reasons that could
contribute to this. Firstly; a subset of probands might have been explained by causal variant in
novel HA/HSP genes that are yet to be identified or were found during the study period. Such
newly identified genes can be added into gene panels on a regular basis. Secondly; some dis-
ease-causing variants might be localized to the non-coding part of DNA. Thirdly; somatic vari-
ants, also including mosaicism could be the cause in some of the individuals. Fourthly; coding
variants might have been missed due to problems related to target capture, sequencing, bioin-
formatic analyses or our data filtering strategy. The DNA pooling strategy used in our study
might have caused a reduced sensitivity to identify certain variants, although our present stud-
ies have found high sensitivity of our protocol [13]. In general, current high throughput
sequencing technologies are less efficient for identification of indels as well as large-scale copy
number variations (CNV) than single nucleotide variants, and our chosen study design has
limitations in this regard. Of note, in one of the probands in our study, a parallel WES study
has identified an in-frame deletion in SPTBN2 that was not detected by our bioinformatic anal-
yses, but was witnessed upon direct inspection of aligned reads. On the other hand, we identi-
fied a molecular diagnosis in two probands HCT-020 (SPG4, SPAST) and HCT-049 (SPG31,
REEPI) where the pathogenic variant was not identified by previous conventional single gene
sequencing, further highlighting the quality and comprehensiveness of the method used here.

Our bioinformatic analysis was unbiased in the sense that we looked for variants indepen-
dent of known inheritance patterns. This leads to some interesting findings, further expanding
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and/or confirming the clinical and genetic heterogeneity and phenotypic spectrum for certain
entities. The KIF1A gene was initially reported in autosomal recessive HSP (SPG30) [42].
However, recently several independent reports have identified variants in this gene in autoso-
mal dominant forms of HSP (MRD9, MIM 614255). Twenty-two probands with de novo vari-
ants are reported with complicated form of HSP including a recent case of PEHO syndrome
(MIM 260565) [43]. However, a pure HSP phenotype has previously been presented in one
family, with a dominantly segregating variant, p.(Ser69Leu) [44]. In a most recent study, two
additional segregating dominantly inherited variants, p.(Tyr74Cys) and p.(Gln632*) have been
identified [39]. In our study, we have identified two dominantly segregating KIF1A variants,
p.(Val8Met) and p.(Ile27Thr), in two independent families. This further confirms the domi-
nant mode of inheritance and allelic heterogeneity associated with KIFI1A. Both variants are
located within the functional motor domain of the KIF1A protein. Interestingly, affected indi-
viduals of both of our families presented with pure HSP with a childhood onset of the disease,
concordant with the reported families in which dominant inherited variant was found. Based
on these findings, we suggest testing KIF1A in HSP regardless of the phenotypic variability and
inheritance pattern.

We identified one proband with two homozygous missense variants, p.(Gly4230Ser) and
p-(Leud221Val) in SACS with a relatively slowly progressive recessive spastic ataxia with onset
in the teens. The phenotype was consistent with the mild ARSACS phenotype often seen in
non-Quebec-born individuals, with late-onset and absence of the characteristic retinal findings
described in Quebec-born ARSACS individuals. Radiologically, the findings were stable over
the last seven years with cerebellar atrophy. Remarkably, the brain MRI showed no signs of the
previously described characteristic features of ARSACS [45]. This demonstrates that the clini-
cal course was not sufficient for diagnosis, and systematic unbiased methods such as GPS
could identify atypical or previously unreported phenotypes.

We have found ten variants that are categorized as VUS. Some uncertainty regarding the
involvement of these variants in disease will remain until further individuals are reported from
other studies and/or specific functional data from in-vitro or in-vivo studies become available.

It is well-established that HSPs and HAs often overlap, both clinically and genetically.
While performing molecular diagnosis, the choice of gene panel for these disorders is critical.
In most of the contemporary GPS or clinical exome studies, the gene panel selection has been
variable. Our gene panel covered a broad range of genes—known to be involved in spinocere-
bellar degenerative disorders at the time of study. By developing a broad gene panel, one can
avoid spending additional costs and time on single gene analyses or different limited/sub gene
panels that are usually commercially available. Overall, because of the recent advancement in
sequencing technologies, cost is less of an issue when it comes to broad gene panels or clinical
exome sequencing/WES, as several parallel cheap and efficient sequencing methods are avail-
able today. Conversely, repeated update of the gene panels can increase the total costs as
compared to WES, which is a downside of the GPS. Moreover, in case of clinical exome
sequencing, with an updated ethical approval the WES data can be re-analyzed later to further
explore novel genes responsible for disease in undiagnosed cases: this cannot be done with
GPS and is an obvious limitation of the GPS method.

In conclusion, GPS and similar sequencing methods are effective choices for diagnostic
procedures in order to reduce the duration to obtaining a correct molecular diagnosis. To
date, these procedures are not available or implemented in most clinics in the world, and con-
sequently many affected individuals lack a specific genetic diagnosis. A similar strategy is rele-
vant for other heterogeneous neurological disorders. The affected individuals from different
categories; childhood to adult-onset, familial-to-sporadic and pure-to-complex phenotypes
can benefit and be diagnosed earlier using modern high throughput sequencing technologies.
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